TABLE OF CONTENTS

																		Page
INTRODUCTI	ION .											•		•	٠.	٠		1
EQUIPMENT	AND E	EXPERIME	ENTAL F	ROCE	DURE											•:		2
	Mate:	usion Torials .icants,												*:				2 3 4
CHARACTER	RISTICS	OF PRE	SSURE-D	ISPLA	CEME	NT C	CUR	VES					٠					4
COLD HYDR ROUNDS A				F 707	5-0 AI	LUMI	NU#	. Al	LLC	Y						•		6
	Billet	icants a t Nose I em Extr r Trials	Design usion	• • •														6 9 12 13
COLD HYDR	ROSTATI	IC EXTR	USION O	F AISI	4340	STI	EEL	RC	DUN	DS						,		14
COLD HYDR	ND TUI	BING .					•		٠,	•	•							14
COLD HYDR ALLOY AN	200 X 200 200														á			16
	Design	 ie Desig	n. Extr														¥	16
Str	ess-Re	elieved '	TZM.						. '									19 21
HYDROSTAT	IC EXT	rusion	AND DR	AWING	OF	BER	YLL	.IUM	W	IRE								22
REFERENCES								24										

LIST OF TABLES

		Page
Table 1.	Billet Lubricants Used for Hydrostatic Extrusion During This Interim Report Period	4
Table 2.	Experimental Data for the Cold Hydrostatic Extrusion of 7075-0 Aluminum Alloy Rounds	7
Table 3.	Experimental Data for the Cold Hydrostatic Extrusion of Ti-6Al-4V Titanium Alloy Rounds and Tubing	15
Table 4.	Experimental Data for the Cold Hydrostatic Extrusion of AISI 4340 Steel	15
Table 5.	Experimental Data for the Cold Hydrostatic Extrusion of Wrought TZM Molybdenum Alloy and Beryllium Rounds	17
	LIST OF FIGURES	
Figure 1.	Die Seal Arrangements Evaluated in Hydrostatic Extrusion	3
Figure 2.	Classification of Pressure Versus Displacement Curves in Hydrostatic Extrusion	25
Figure 3.	Effect of Fluid and Billet Lubricant on Pressure-Displacement Curves Obtained in the Hydrostatic Extrusion of 7075-0 Aluminum at a Ratio of 20:1	8
Figure 4.	Effect of Billet Nose Shape and Fluid on Pressure-Displacement Curves Obtained in the Hydrostatic Extrusion of 7075-0 Aluminum	дицен
	at a Ratio of 40:1	10
Figure 5.	Billet Nose Designs Evaluated in Hydrostatic Extrusion	11
Figure 6.	Tandem Billet Joint Designs Evaluated in Hydrostatic Extrusion	12
Figure 7.	Standard Die Profile and Two Dies Designed to Eliminate Cracking of Hydrostatic Extrusions	18
Figure 8.	Influence of Die Design and Extrusion Ratio on Cracking of Hydrostatic Extrusions of Wrought TZM Molybdenum Alloy	20
Figure 9.	Influence of Extrusion Ratio on the Extrusion Fluid-Runout Pressure for Wrought TZM Molybdenum Alloy	21